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ABSTRACT

Since 1976 the Artificial Intelligence Center of SRI International
has been conducting a program of research on ways of providing
nontechnicians with easy access to complex, distributed data bases of
information. This program has emphasized mutually supporting lines of
both short-term and long-term research. The short-term research has
resulted in an operational computer system for natural-language access
to a distributed data base. The LADDER system (Language Access to
Distributed Data with Error Recovery) is designed to provide answers to
questions posed at the terminal in a subset of natural language
regarding a distributed data base of naval command-control information.
The system accepts a rather wide range of natural-language questions
about the data, and for each question plans a sequence of appropriate
queries to the data base management system; determines on which machines
the queries are to be processed; establishes links to those machines
over the ARPANET; monitors the processing of the queries and recovers
from certain errors in execution; and prepares a relevant answer to the
original question.

The first-generation LADDER system was completed by September,
1977. 1In October, 1977, work was begun on a second-generation LADDER
system that dramatically extends the capabilities of the first-
generation system along several dimensions. This report describes the
evolution of the new system.

—> Section I of this report gives some background information on the
LADDER system, outlines the changes made to the architecture of the
system, and briefly explains the enhanced capabilities produced by those
changes. Section II discusses user experiences with the first-
generation LADDER system and the response of SRI to the reports of those
experiences. Section III describes new user features that have been
added to LADDER. Section IV discusses SODA, an improved data access
system for LADDER, explaining its new capabilities and the problems of
supporting those capabilities in accessing distributed data. Section V
describes how the system has been extended to access a heterogeneous
data base consisting of both Datacomputer and DBMS-20 data base
management systems. Section VI reports on progress to date in bringing
the results of our longer-term research into the LADDER system, in the
form of a new natural-language processor that will permit a greater
range of natural-language questions and lay the groundwork for
transporting the system to new data bases and new domains. Section VII
lists the publications and presentations by the project staff during the
period covered by this report. Finally, Appendix A gives more detail on
the new formal query language for data access, and Appendix B describes
an experimental French-language version of LADDER.
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I INTRODUCTION

A. EVOLUTION OF A NATURAL-LANGUAGE INTERFACE TO COMPLEX DATA

Since 1976 the Artificial Intelligence Center of SRI International
has been conducting a program of research on ways of providing
nontechnicians with easy access to complex, distributed data bases of
information. This program has emphasized mutually supporting lines of
both short-term and long-term research. The short-term research has
resulted in an operational computer system for natural-language access
to a distributed data base. The LADDER system (Language Access to
Distributed Data with Error Recovery) is designed to provide answers to
questions posed at the terminal in a subset of natural language
regarding a distributed data base of naval command-control information.
The system accepts a rather wide range of natural-language questions
about the data, and for each question:

(1) Plans a sequence of appropriate queries to the data base

management system.

(2) Determines on which machines the queries are to be
processed.

(3) Establishes links to those machines over the ARPANET.

(4) Monitors the processing of the queries and recovers from
certain errors in execution.

(5) Prepares a relevant answer to the original question.

Work on LADDER is being carried out in support of the Advanced
Command Control Architectural Testbed (ACCAT) program under the
sponsorship of the Defense Advanced Research Projects Agency (DARPA).
The ACCAT program is intended to provide a facility for transferring
emerging information processing technology to Navy command-control
applications. While the direct application of SRI’s effort has been to
develop prototype systems to aid in naval command and control, the
software tools that have been created and the concepts underlying them

e o
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offer potential aid to decision makers in the other services,
government, and industry as well.

The first-generation LADDER system was completed by September,
1977, and has been extensively described in the literature [l] [2]
[3) (4] (5) (6] (7] 1In October, 1977, work was begun on a second-
generation LADDER system that dramatically extends the capabilities of
the fiilt-gensration system along several dimensions. This report
describes the evolution of the new system.

The remainder of Section I gives some background information on the
LADDER system, outlines the changes made to the architecture of the
system, and briefly explains the enhanced capabilities produced by those
changes. Section II discusses user experiences with the first-
generation LADDER system and the response of SRI to the reports of those
experiences. Section III describes new user features that have been
added to LADDER. Section IV discusses SODA, an improved data access
system for LADDER, explaining its new capabilities and the problems of
supporting those capabilities in accessing distributed data. Section V
describes how the system has been extended to access a heterogeneous
data base consisting of both Datacomputer [8] and DBMS-20 [9] data
base management systems (DBMSs). Section VI reports on progress to date
in bringing the results of our longer-term research into the LADDER
system, in the form of a new natural-language processor that will permit
a greater range of natural-language questions and lay the groundwork for
transporting the system to new data bases and new domains. Section VII
lists the publications and presentations by the project staff during the
period covered by this report. Finally, Appendix A gives more detail on
the new formal query language for data access, and Appendix B describes
an experimental French-language version of LADDER.

The work decribed in this report reflects efforts by an integrated
group at SRI performing research in natural-language access to data
bases along a broad spectrum from the creation of demonstration systems
to advanced research in computer understanding of natural language.
Members of the group during the period covered by this report include
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Barbara J. Grosz, Norman Haas, Gary G. Hendrix, Jerry R. Hobbs, Kurt
Konolige, Robert C. Moore, Staffan Lof (now at the KVAL Institute for
Information Science, Stockholm), Nils J. Nilsson, Gordon S. Novak, Jr.
(now at the University of Texas), Ann E. Robinson, Jane J. Robinson,
Earl D. Sacerdoti, Daniel Sagalowicz, Jonathan Slocum (now at the

University of Texas), and B. Michael Wilber. Staffan Lof participated

in the research program as an International Fellow at SRI under
sponsorship of the National Defense Research Institute in Sundbyberg,

Sweden.

B. BACKGROUND INFORMATION ON LADDER

1. Implementaticn

The LADDER system 1is written in INTERLISP [10], and the
current version uses SRI‘s proprietary LIFER package [4] [5] for
building natural-language interfaces. LADDER has been operational since
June, 1976, and has been installed on a PDP-10 in the ACCAT facility at
the Naval Ocean Systems Center (NOSC) since January, 1977. As of
October, 1978, LADDER was also installed on three hosts on the ARPANET:
SRI-KL and SRI-KA at SRI International, and ISIB at the Information
Sciences Institute of the University of Southern California (ISI). At
SRI-KL, LADDER runs under the TOPS-20 operating system; at the other
sites it runs under TENEX. LADDER is used to access the Blue File and
FC data bases, which are described in detail elsewhere [11] (12]. They
are currently stored on the Datacomputer DBMS [8] developed by Computer
Corporation of America and the DBMS-~20 system [9] of Digital Equipment
Corporation.

2. Basic Capabilities of LADDER

To provide an understanding of the context in which we did the
work described in this report, we give the following examples
illustrating the basic question-answering capabilities of LADDER. Some
of the more advanced features of the system will be reviewed later in
Section III.
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An attempt has been made to accept a wide range of English-
language inputs that are relevant to the data base and to the task of
naval command-control decision making. One simple, but very common,
type of question is to ask what ships satisfy a given set of
restrictions. The user can ask for ships of any particular class (e.g.,
Kitty Hawk), type (e.g., cargo freighter), or naval classification
(e.ge, SSBN). Examples of simple restriction-type questions are:

NAME THE LOS ANGELES CLASS SUBMARINES.
WHAT SHIPS ARE HEAVY CRUISERS?
LIST THE SHIPS OF TYPE DDG.

Additional restrictions can be specified by appending a
country, kind of operation, or distinguishing feature. For example:

IS THE FOX AN AMERICAN CRUISER?
PRINT THE NUCLEAR POWERED NAVAL VESSELS.
WHAT IS THE FASTEST DUTCH MERCHANT SHIP?

Questions can ask for more complex restrictions, such as
comparisons of characteristics, comparisons with other ships,
specifications of position, indications of route, cargo, or casualty
status. For example:

ARE ANY SUBMARINES MORE THAN 300 FEET LONG?

WHAT AMERICAN NAVAL SHIPS ARE FASTER THAN THE FASTEST DUTCH
MERCHANT SHIP

ARE THERE ANY FOREIGN CARGO FREIGHTERS WITHIN 300 MILES OF
CAPETOWN?

NAME THE U S TANKERS WHOSE CURRENT SPEED OF ADVANCE IS LESS
THAN 10 KNOTS.

REPORT ALL SHIPS CARRYING COALS TO LONDON.

DESCRIBE THE CRUISERS THAT ARE NOT AT READINESS RATING Cl.

Additional types of modifications can be produced by
specifying attributes of the ships. For example:

SHOW ME THE DESTROYERS WHOSE RADAR IS INOPERATIVE!

DO ANY SHIPS WITHIN 400 MILES OF LUANDA HAVE A DOCTOR ABOARD

WHAT ARE THE OILERS WHOSE LAST REPORTED POSITION IS WITHIN 250
MILES?

NAME THE NEAREST SHIP TO THE KENNEDY WITH AN OPERATIONAL AIR
SEARCH RADAR.

Most of the questions typically askad of a data base are
concerned with the current values of attribuces that are explicitly
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stored. LADDER provides many formats for specifying such questions.
The simplest forms ask explicitly for the attributes. For example:

WHAT IS THE RADIO CALL SIGN OF THE FOX?
WHAT IS THE STANDARD DISPLACEMENT OF EACH OILER WITHIN 400
NAUTICAL MILES OF GIBRALTAR
PRINT THE CURRENT POSITION AND FUEL STATUS OF THE DESTROYERS
IN THE MED!
Many more formats permit asking about attributes of ships in
subtler ways. For example:

HOW IS THE SOUTH CAROLINA POWERED?

WHERE WERE THE OILERS LAST REPORTED

WHERE WILL EACH DUTCH CARGO FREIGHTER GO

HOW FAST IS EACH SOVIET MERCHANT VESSEL IN THE NORTH ATLANTIC?
WHEN IS THE CALIFORNIA SCHEDULED TO ARRIVE ON STATION

TO WHAT TASK GROUP DOES EACH DDG BELONG?

WHAT CLASS DOES THE HOEL BELONG TO

WHY IS THE AMERICA AT READINESS RATING C5?

WHO COMMANDS THE STERETT?

C. OVERVIEW OF THE SECOND-GENERATION SYSTEM
l. Architecture of the First-Generation System

The first-generation LADDER system consists of three principal
components. The first component, INLAND (Informal Natural Language
Access to Navy Data), accepts questions in a restricted subset of
English and produces a query or queries addressed to the data base as a
whole. The queries to the data base refer to specific fields, but make
no mention of how the information in the data base is broken down into
files.

The next component, IDA (Intelligent Data Access) breaks down
a query against the entire data base into a sequence of queries against
various files. IDA translates each query into Datalanguage, the query
language supported by the Datacomputer DBMS, and composes the answers of
the subqueries into the final answer returned to the user.

The task of dispatching the Datalanguage queries to the
appropriate Datacomputer is handled by FAM (File Access Manager). This
component searches a locally stored model for the primary location of




the file (or files) to which a query refers, establishes connections
over the ARPANET to the appropriate computers, logs in, opens the files,
and transmits the Datalanguage query. If at any time, the remote
computer crashes, the file becomes inaccessible, or the network
connection fails, FAM can recover and, if a backup file is mentioned in
its model of file locations, it can establish a connection to a backup

site and retransmit the query.

2. Natural-Language Interface

The second-generation system includes major modifications to
all the components described above. 1In the INLAND natural-language
interface, evoluticnary improvements have been made in the form of the
new user-oriented features described in Section III. These improvements
include a route finding package that avoids land masses, an interface to
the Situation Display Graphics Subsystem (SDGS) [13] for graphical
display of data base information, enhanced capabilities to let the user
define his own question forms and use elliptical inputs, and additional
feedback in the form of natural-language paraphrases of the data bsase

queries that are issued in response to the user’s question.

In addition, substantial progress has been made toward
bringing up a new natural-language front end that is the product of our
earlier long-range research. As described in Section VI, this new
system will have two major advantages over the present LIFER-based
system when it becomes operational. First, because it contains a much
more comprehensive, general grammar of English, it will enable LADDER to
handle a much wider range of language forms. The difficulty with the
current system is that it depends on a grammar that is based on
semantically meaningful categories in the domain of application, such as
ships or ports. In natural language, however, grammatical patterns cut
across these categories. The result is that the system might be made to
accept

WHO IS THE KENNEDY COMMANDED BY?
but not
WHO IS THE KENNEDY OWNED BY?
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even though the active forms of both these questions are acceptable.
The reason is that, since the semantic categories associated with OWNED
and COMMANDED differ, it is difficult to state a "passive rule" that is
applicable in all cases.

The other major advantage of the new front end is that it will
make the system more easily portable to other domains and data bases.
The griﬁnar used in the first-generation system is tailored specifically
to the domain of naval command and control. This produces some gains in
efficiency, but it means that switching to a different domain of
application requires completely rewriting the grammar. Since the new
system uses a general grammar of English, we expect the grammar to be
substantially the same over a wide range of applications. In switching
from one domain to another, new vocabulary will have to be introduced,

but new grammatical rules should not.

Another factor enhancing the portability of the system is that
the new front end uses a model of the domain of application, called a
"conceptual schema,"” that is independent of the data base. In the
current system, data base queries are produced directly by the natural-
language front end. Thus, if the data base is significantly changed,
the front end must also be modified, even if the domain of application
and the concepts used remain the same. With a conceptual schema, the
issue of what information the user is seeking is kept distinct from the
question of how that information can be retrieved from the data base.
If the organization of the data base is changed, but no new concepts are
added, the only changes required to the front end will be in the mapping
from the conceptual schema to the data base.

3. Data Base Access

IDA, the data access component of the first-generation LADDER
system, is very limited in the sorts of queries that it accepts.
Basically, IDA queries can only select a single set of tuples from the
data base applying simple boolean restrictions, perform some simple
computation on the set, and return the result of the computation or a




projection of the set. This rules out many useful queries that involve
more complex combinations of several sets of tuples. For example, if
the data base contained multiple position reports for each ship taken
over a period of time, it would be impossible to obtain the most recent
postion report for each ship with a single IDA query. Retrieving this
information would require searching the set of postion reports for each
ship to find the most recent one and forming the set of the most recent

reporte for all the ships. The IDA query language cannot represent such

a request.

To overcome the limitations of IDA, the second-generation
system incorporates SODA (SOphisticated Data Access), a completely
redesigned data access component described in Section IV. SODA accepts

requests for information expressed in a much more powerful query
language than IDA. Examples of queries that can be expressed in SODA,

but not in IDA, include:

GIVE THE MOST RECENT POSITION FOR EACH AMERICAN SHIP.

WHICH AMERICAN SHIPS ARE LESS THAN 100 MILES FROM WHICH
SUBMARINES?

HOW MANY SHIPS ARE IN EACR SHIP CLASS?

WHAT SHIP CLASSES HAVE THE MOST SHIPS IN THEM?

WHICH AMERICAN SHIPS ARE MORE THAN 500 MILES FROM EVERY
AMERICAN PORT?

To process a query, SODA plans what relations at what data
base sites must be accessed to retrieve the answer, constructs the 4
necessary programs in the languages of the DBMSs invclved, and requests T
movement of data among the data base sites. The problems of distributed 1
query processing are much more difficult for SODA than for IDA because {4
of the increased complexity of the queries haundled. These issues are §
discussed in detail in Section IV.E, and the solutions chosen for
implementation in SODA are explained in Section IV.F. ]

4. Accessing Multiple DBMSs
Although the first-generation LADDER system is able to
retrieve information from a distributed data base, each data base site 11
must use the same DBMS--the Datacomputer. The second-generation system :




has been extended to access data base sites running Digital Equipment
Corporation’s DBMS-20 system as well. This extension is discussed in
Section V. Omne of the reasons for choosing DBMS~20 was that it uses not
only a different query language from the Datacomputer, but also a
'E different data model. While we use the Datacomputer as a relational
data base, DBMS-20 is based on the CODASYL [l14) network-structured data
model," giving us maximum heterogeneity among the sites im our
distributed data base. The resulting system is, to our knowledge, the

only existing operational system to provide uniform access to a truly
heterogeneous data base. An example of query execution using both types
of DBMS is given in Section V.B, and a discussion of the relative merits

of relational and CODASYL DBMSs for interactive query processing is
included in Section V.C.
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II  EXPERIMENTS WITH LADDER

A. THE DATA AND OUR RESPONSE

During the period covered by this report we acquired the first data
from sizable groups of LADDER users who were not computer-oriented.

This data came from two sources: an experiment run at NOSC evaluating

LADDER in a simulated command-control environment ([15]), and transcripts

from 19 students taking a course in the command-control curriculum at
the Naval Postgraduate School (NPS). The questions that LADDER was
unable to handle have been analyzed and found to fit into three major
categories.

The first category is requests for information not in the data
base. This was particularly detrimental to the performance of the NPS
students. One of their major training aids was a workbook produced by
NOSC that was oriented toward the FC (Pacific Ocean) data base; however,
they were accessing the Blue File (Atlantic and Mediterranean) data
base. While we cannot do anything about inaccessible data, we have
improved the error messages to print out "<unknown-word> is not in
LADDER’s vocabulary" when a word--<unknown-word>--is not in the lexicon.
This should prevent users from wasting time trying alternative syntactic
constructions involving the word. The second category concerns

questions involving distance or direction. The coverage of this kind of

question has been broadened considerably, as suggested by the list
presented in Section II.D.

The third category of questions not handled by the system is what
the NOSC report calls "define word" and "define phrase." These were
surprisingly difficult for the users to understand and use. A major
source of their difficulty seems to have been that the NOSC workbook did
not correctly specify their use. At the time the evaluations took 1

place, the "define word" command required both the new word and the

10
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model to be single words (e.g., '"DEFINE CAN LIKE DESTROYER" worked,
whereas '"DEFINE LA LIKE LOS ANGELES" did not). However, the workbook
used for training both the NOSC and NPS users contained examples of the
form that did not work. It is understandable that users had trouble
with the feature and felt unhappy about LADDER, since it did not do what

they were told it would. Less significantly, two of the "define phrase"
examples in the workbook also would not work as shown. (At least 7 of
the NOSC users’ errors--over 6 percent--appear to have stemmed from
these mistakes in the workbook.) Nevertheless, the form of the command
used in the NOSC workbook appears to be more natural and easier to use
than our original form. We have therefore extended LADDER to accept the
definition of new phrases on a phrase-by-phrase basis rather than by
embedding them within a complete sentence (for example, by typing DEFINE
"% PECOS" LIKE "WITHIN 700 MILES OF PECOS"). In addition, the error
messages printed when a DEFINE command does not work have been expanded,
so that users may learn how to use the DEFINE capability more easily.
Also, apelling correction now is performed on the model sentence or

sentences.

A major criticism in the NOSC report was that, when a question
could not be handled by LADDER, it took far too long for LADDER to fail
and print the error message. By the time the NPS students took their
turn, and prior to our having seen the NOSC report, we had installed a
new feature that doubles the speed of parsing acceptable queries and
much more than doubles the speed of rejecting unacceptable ones. We had
no complaints from the NPS students about the amount of time LADDER took
to fail.

B. THE VALUE OF EXPERIMENTATION

We at SRI and our colleagues at ACCAT, NAVELEX, and ARPA had been
saying to one another for two years that incremental feedback from
people who are much closer than us to the operational community is
essential for the development of LADDER-like systems. Although we had
all been saying this, we got little such feedback until May, 1978. It

11
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was surprising how many easily-closed holes in the system were uncovered
by these evaluations. It is also surprising that, to a large extent,
the same holes were fallen into by user after user. This suggests that
it might have been worthwhile to have had more feedback earlier on.

This will become even more important as the issue of installing a
system like LADDER in an operational environment is faced. The
experiences of the NOSC and NPS users show very strongly that that
installation must be an evolutionary process. It cannot be done, for
example, by spending a few days at CINCPACFLT, coming home to work for a
year, and then showing up on their doorstep with the "completed" system.
It should not take much time from the operators, but some short
interaction every few months seems essential to the development process.
This may sound like a truism regarding bringing new systems into
operation, but it will be truer than ever in trying to develop a system
based on LADDER whose claim is that it works on the user’s own terms.

In summarizing the results of our response to the NOSC and NPS
users’ experiences, it appears that the new LADDER would now handle
about 90 percent of the NOSC questions. Most of the rest (e.g. 'What
nation Pecos what owner," "What is distance of Pecos," "Who is own,"
"When arrival Knox at Pecos?") are questions that either do not have a
well-defined meaning or are simply beyond our current real-time
processing capabilities. Examples of inputs to LADDER that failed in
the NOSC experiments and now appear to work are given in Section II.D.
Thanks are due to Curt Blais and Hal Miller at NOSC and Gary Poock at
NPS for their help in providing us with the wealth of data. A second
class of command-control students are scheduled to try using LADDER in
the summer of 1979. The experience of this group will provide an
important indication of how rapidly a natural-language access system
such as LADDER can be made to converge on an acceptably high coverage of
the relevant questions that users wish to ask.

12
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C. CONCLUSIONS

We have drawn several conclusions from examining the body of data
gathered during these experiments. These are subjective evaluations
that come from an admittedly technology-oriented perspective, but we

nonetheless believe they are valid.

) o Importance of User Feedback

The most critical need we saw reflected in the data was for
informative and timely feedback to the user. At every stage of the
query process our users would have doubts about the system’s
performance. In response to their expressions of insecurity with

respect to the computer system, we installed the following features:

(1) A paraphrase in English of each query to the data base.

(2) A character printed on the screen every three seconds
while LADDER is waiting for response from the
Datacomputer, to assure the user that the host machine
and the LADDER software are still operational.

(3) Features enabling each user to check what extensions he
has made to the basic language accepted by the system.

(4) Improved error messages to provide more information about
why a query failed. In particular, a special message was
provided to be prirnted when a user uses a word that is
not in LADDER’s vocabulary, since this often implies that
he is asking about information not in the data base.

2. Importance of Flexibility

The experience of our users shows clearly that a good
interface must not only accept grammatically correct natural-language
inputs, but must attempt to determine the meaning of as wide a range as
possible of incorrect inputs. This supports several distinguishing
aspects of our approach to natural-language interfaces:

(1) Spelling Correction -- The unsatisfactory nature of the
standard keyboard as a means of input for military
decision makers is clear. The NOSC experiment was
carried out with a Tektronix 4051 as a front end to

LADDER. After the user typed in his query, he had an
opportunity to check and edit it before it was sent to

13
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LADDER. Neverthelass, 23 per cent of the queries
contained a typing error. The spelling correction
capability of LADDER appears to be its most attractive
feature to new users.

(2) Ellipsis -~ For maximum efficiency, users’ queries should
be as short as possible. The results of our initial
experiments indicate that users are very creative in
shortening their inputs. LADDER’s ability to process
elliptical inputs has been extended to accept more kinds
of shortened queries, but further research in this area
appears to be needed.

3.  Apparent Adaptability of LADDER

Although a natural-language interface may function according
to specifications, it cannot be viewed as a tool of potentially wide
utility unless it can be easily changed as the specifications change.
1f we view the NOSC and NPS users’ experiences as providing a modified
set of specifications, LADDER appears to be sufficiently adaptable, at
least with respect to a given data base. An important thrust of our
next year’s work will be to extend this adaptability to new data bases
as well.

4. A Testbed System or a Demo System?

Many of the gaps in coverage of users’ queries resulted from a
difference between the LADDER system’s normal use as a demostration
vehicle and its experimental use in a testbed environment. Although
LADDER can be extended to serve both functioms, it is difficult to
evaluate it as a purely testbed system when it has been "detuned" to
function primarily as a demonstration vehicle.

D. QUESTIONS HANDLED BY THE NEW LADDER

MAP SELECTION AND DISPLAY COMMANDS

Select map 200 miles from Pacos

Select a map 200 miles from Pecos

Show all ships 200 miles from Pecos

Select a map of area within 700 miles of Pecos
Select a map of 1000 miles around 37.66mn,174.5w
Select a map of 1000 miles from 37.66n,174.5w

14
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List (show) all ships in area
Select map from 37-40n,174-30w

GENERAL/SPECIFIC INFORMATION QUERIES

Who is the owmer

Who is OPCON of SAR-1

List port of departure and destination port of Pecos
Where is Pecos coming from

What is port of departure and port of destination of Pecos
Name of OPCON of SAR-1

What is Pecos port of registery

What is the home port of Pecos

What is ... of the listed ships

What is ... of the ships on the list

TIME COMPUTATION QUERIES

What is the time for Rathburne to reach Pecos
How long for Rathburne to reach Pecos

DISTANCE QUERIES

Display the distance of Pecos from here

What is distance of Pecos (presumed "from here")

What is distance from Pecos to here

What is distance between Pecos and all ships within 700 miles

What is distance from Pecos to all ships within 700 miles

What is the distance from Pecos to Connie, Biddle, R K Turner,
Halsey, Adelaide Star

What is distance between Pecos and San Francisco

What is distance from Pecos to San Francisco

What is the distance of ships within 700 miles of the Pecos to Pecos

What is distance to Pecos

What is distance of these ships from Pecos

What is distance from Pecos to all ships within 700 miles of Pecos

What is distance from Pecos to constellation

List distances of all ships within 700 miles of Pecos

What is the distance of Pecos from Honolulu

What is the distance to Pecos of each ship
within 700 miles of Pecos

How far is Biddle from Pecos

How far is Pecos from all ships within 700 miles

DEFINITION OF WORDS AND PHRASES

Define (Daships) to be like (ships within 700 miles of Pecos)
Define (Prthst of Pecos) to be like (ports of departure of Pecos)
Define (name SAR-1) to be like (name Rathburne and Knox)
Define (? and Rathburne) like (what is distance from Pecos

and Rathburne)

15
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Define distance like what is the distance from

Define (what is the port of Departure $)
like (what is the port of departure of the Pecos)

Define ( leéngth of the Pecos) like (what is the length of
the pecos)

Define last to be like 37-40n,174-30w

Define (vhat is the distance to last) like (what is the distance
to 37-40n, 174-30w)

Define (what is distance from here to last) like (what is distance
from here to 37-40n, 174-30w)

Define (wvhat is distance from Honolulu to last) like (what is
distance from Honmolulu to 37-40n, 174-30w)

Define (range of Kennedy from Honolulu) like (what is the distance
of Kennedy from Honolulu)

Define (* Pecos) like (within 700 miles of the Pecos)

Define SAR-1 to be like Rathburne and Knox

Define (w) like (what is the)

Define (range) like (what is the distance of)




III  NEW USER FEATURES OF THE LADDER SYSTEM

A. QUESTIONS INVOLVING CALCULATIONS

In this section we review some of the advanced features of LADDER
and explain how they have been extended during the period covered by
this report. Some of these features enable the system to combine
computation with data base retrieval. This is a major advantage of
having a computer serve as the interface between a decision maker and a
data base, since the computer can perform complex calculations on the
data retrieved much faster and more reliably than a person. During the
past year, we have implemented some examples of this kind of capability
in LADDER, but have not attempted to provide for all the calculations a
naval decision maker might need.

LADDER attempts to handle questions concerning distances between
ships, which involve calculations dependent upon position information
retrieved from the data base, and questions concerning steaming times,
which require position information as well as current and maximum speed
values from the data base.

This past year, we have also implemented in LADDER a route
calculation routine for avoiding land masses. This routine uses a model
of the sea areas of the world and the junction points that must be
traversed between them. The particular model used by the curreat
version of LADDER is very simple and hence may give inexact answers; the
performance of the routines would improve with a more detailed model.
Some questions the user can ask include:

HOW MANY MILES IS THE CONSTELLATION FROM HER NEXT PORT OF CALL

HOW FAR IS EACH AMERICAN DESTROYER FROM THE SOVIET CARRIERS

WHAT SHIPS CARRYING DOCTORS ARE WITHIN EIGHT HOURS’ STEAMING
TIME OF THE PECOS?

WHAT IS THE NORMAL TRANSIT TIME FOR THE KENNEDY FROM NORFOLK
TO GIBRALTAR

DOES THE SARATOGA HAVE ENOUGH FUEL TO REACH BUENOS AIRES
WITHOUT REFUELING?

17
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HOW LONG WOULD IT TAKE FOR THE WAINWRIGHT TO GET TO NAPLES
WHAT IS THE BEST ROUTE FOR THE SUNFISH TO THE SKORY?

B. DISPLAYING DATA GRAPHICALLY

During the past year, we have implemented a very simple interface
with the Situation Display Graphics Subsystem [13]), developed by the
Information Science Institute (ISI) of the University of Southern
California. Four special commands are provided to cause information to
be displayed in map format.

Before displaying any data base information the user must direct
LADDER to display a map. This is done with the SELECT command, which
consists of the word "select" followed by a region specification. For
example:

SELECT A MAP OF THE NORTH ATLANTIC

SELECT THE AREA WITHIN 500 NAUTICAL MILES OF THE WORDEN.

After a map is displayed, ships or sets of ships may be added to it
or removed from it using the SHOW and ERASE commands. The context of
these commands is presumed to be the area on the display. For example,
after typing "Select a map of the Mediterranean,” the command, "Display
all the carriers" will cause only carriers in the Mediterranean to be
retrieved from the data base and displayed.

An additional command is provided to permit a graphic image to be
saved on disk. This command takes the form
SAVE <name> ,

where <name> is any valid file name.

C. EXTENDING THE RANGE OF QUESTIONS

It is impossible to provide a natural-language interface system
such as LADDER with an ability to accept all the questions that could
conceivably be asked about a given data base. Furthermore, frequent
users will want to develop their own shorthand questions for accessing
the data they often use. To meet these needs, LADDER allows each user

to extend the grammar dynamically, by example, to handle new types of
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questions. The DEFINE command is used to extend the grammar by adding a
synonym, a new phrase, a paraphrase of a single question, or a

paraphrase of a sequence of questions, which we call a macroparaphrase.

To add a synonym of a word that is known to the system, the user
may just type
DEFINE <new-synonym> LIKE <known-word>.
For example,
DEFINE CONNIE LIKE CONSTELLATION
will permit a question such as
WHO COMMANDS CONNIE?
to be handled.

To add a new phrase, the user may type

DEFINE "<new-phrase>" LIKE "<known-phrase>"
where <known-phrase> is any sequence of words that the system could
accept in some sentence. Either <new-phrase> or <known-phrase> can be a
single word. Examples of this feature include:

DEFINE "MEDSHIPS" LIKE "SHIPS WITH A DOCTOR ABOARD"

DEFINE "TIN CAN" LIKE "DESTROYER"

DEFINE "SHIPS OF INTEREST" LIKE "SHIPS WITH A DOCTOR ABOARD
WITHIN 400 MILES OF PECOS."

These new phrases are handled by LADDER by substituting the known phrase

for the new phrase whenever it occurs in a question, before the parsing
of the sentence begins. LADDER will retype the user’s question with the
substitution when it is performed.

LADDER permits the user to add an entirely new question format by
example. To do so, the user must provide LADDER with an example of how
the extension is to be used in the context of a complete sentence. This
is done by typing,

DEFINE "<new-sentence>" LIKE "<known-sentence>",
where <known-sentence> can already be handled. For example,

DEFINE "CARRIERSTAT MEDITERRANEAN" LIKE "WHAT IS THE CURRENT
POSITION, FUEL STATE, AND READINESS STATUS OF ALL
CARRIERS IN THE MEDITERRANEAN"

will cause the new pattern
CARRIERSTAT <MACRO.LOC> :
to be added to the grammar. Subsequently, questions like
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CARRIERSTAT NORTH ATLANTIC
will be accepted by LADDER.

During the past year, we have provided a novel facility for

allowing a new question to substitute for a sequence of old questions,
each of which is already understood by LADDER. The define command is
still used, but the model (the part following "like") can be a sequence
of questions. For example,

DEFINE "GIVE AN OVERVIEW OF JFK" LIKE "WHAT IS THE TYPE,
LENGTH, BEAM, AND DISPLACEMENT OF JFK? WHAT WEAPONS DOES

SHE CARRY? WHO COMMANDS HER? WHAT IS HIS LINEAL
NUMBER?"

will add to the grammar the pattern:
GIVE AN OVERVIEW <OF> <SHIP>.
this will permit questions such as,
GIVE AN OVERVIEW ABOUT ALL THE US SUBMARINES

to be answered.

When the define command is processed by LADDER, each sentence in
the model is parsed (spelling correction will be performed if necessary)
but the data base is not queried to answer the questions. When a
macroparaphrase is processed by LADDER, each question in the model is
typed out ‘before LADDER proceeds to answer it.

D. ELLIPTICAL QUESTIONS AND COMMANDS

LADDER accepts not only complete sentences, but also sentence f

fragments that can be interpreted in the context of the previous
sentence. The syntactic term for this condition, in which words of the :
second sentence are left out but implied, is ellipsis.

When an input cannot be interpreted as a complete sentence, LADDER !
types out the message, "trying ellipsis:", and then checks to see if it
is analogous to any contiguous string of words in the previous sentence.
If it is, the input is substituted for that string and the resulting new
sentence is printed out. LADDER then proceeds to carry out the
resulting request. Examples of valid elliptical inputs in the context

? of the previous question, "WHAT IS THE LENGTH OF THE SANTA INEZ"

include:
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THE BEAM AND DRAFT

HOME PORT OF THE AMERICAN CARRIERS
PRINT THE NATIONALITY

KITTY HAWK

During the past year, we have extended the ellipsis capability to
handle phrases such as:

WHAT ABOUT X
where x 1is a sentence fragment. Thus LADDER will now accept the
sequence:

WHAT IS THE LENGTH OF FOX?

WHAT ABOUT DRAFT?

Elliptical fragments can also be added to the end of the previous
sentence, as in the sequence:

WHAT ARE THE US CARRIERS?
IN THE MED?

E. MONITORING SYSTEM BEHAVIOR

1. Paraphrasing Data Base Queries

When the user types a question to LADDER, it is printed on the
terminal. In addition LADDER now produces a paraphrase of the queries
to the data base required to reply to the question. This paraphrase
provides a means for the user to check that LADDER has interpreted his
question properly. There may be more than one paraphrase produced if
more than one data base query is required to answer a given question.
For example, if the user asks,

WHAT SHIPS WITH A DOCTOR ABOARD ARE WITHIN 900 NAUTICAL MILES
OF THE BRITISH BOMBARDIER?

LADDER will print out

For SHIP equal to BRITISH BOMBARDIER, give the POSITION and
DATE.

and, subsequently,

For DOCTR equal to D and great circle distance to 46-33N, 21~
29W less than or equal to 900, give the SHIP.

(46-33N, 21-29W is the position of the British Bombardier determined
from the previous query.) These two paraphrases together comstitute
LADDER’s interpretation of the user’s question.
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2. Iiming

In the past, users of LADDER have pointed out that there may
be long periods when nothing seems to be happening. To alleviate this
sense of frustration, LADDER now types & dot whenever a command is sent
to the Datacomputer, and counts the number of three-second intervals
that elapse as it waits for the answer. This will inform users that
LADDER is functioning properly and awaiting action from the data base.
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IV  HANDLING COMPLEX QUERIES IN A DISTRIBUTED DATA BASE

A. INTRODUCTION

As part of the continuing development of the LADDER system, we have
substantially expanded the capabilities of the data base access
component that serves as the interface between the natural-language
front end of LADDER and the data base management systems on which the
data is actually stored. SODA, the new data base access component, goes
beyond its predecessor IDA [6], in that it accepts a wider range of
queries and accesses multiple DBMSs. This section is concerned with the
first of these areas, and discusses how the expressive power of the
query language was increased, how these changes affected query
processing in a distributed data base, as well as what are some

limitations of and planned extensions to the current system.

To explain the new features of SODA, it will be useful to review
briefly the capabilities of IDA. 1IDA is designed to access a relational
data base. That is, it expects the data base to be organized as a set

of relations (files), each of which contains a set of tuples (records)

that are in turn composed of various fields. The IDA query language
permits the user to view the entire data base as if it were a single
relation, with IDA being responsible for planning which actual data base
relations have to be accessed to answer the query. An IDA query is
interpreted as a request to:

(1) Generate the set of all tuples satisfying a given

description expressed as a Boolean combination of simple
comparisons on the fields of the tuple.

(2) (Possibly) select the member of the set for which some
attribute is largest or smallest, or count the members of
the set.

(3) Return the values of certain attributes for each member
(or for the selected member) of the set.
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For instance, in the Blue File command and countrol data base (l1]
which we have been using, the English query, "What is the longest
American ship?" could be expressed using IDA as:

((* MAX LGHN) (NAT EQ ‘US’)(? NAM))

The term (NAT EQ °‘US’) tells IDA that the tuples we are interested
in are those for which the NAT field has the value ‘US’, i.e the tuples
pertaining to American ships. The term (* MAX LGHN) tells IDA that we
want to select from this set of tuples the tuple for which the field
LGHN has the highest value, i.e. the tuple for the longest American
ship. Finally, the (? NAM) field tells IDA that we want to return the
value of the field NAM from this tuple, i.e. the name of the longest
American ship.

IDA would interpret this query by finding the smallest set of
relations in the data base that contains all the fields mentioned in the
query and specifying to the DBMS what it believes to be the semantically
meaningful links among those relations. IDA then generates a program in
the DBMS access language that interprets the query with respect to these
selected relations.

This approach limits the expressive power of the query language in
a number of ways. First, only one set of objects can be talked about in
each query. The only way in which two sets of objects can be referenced
is if the set that the query is "about" is their intersection or union.
Thus we can express the query ‘'Which ships are American submarines?"
(intersection), or "Which ships are American or are submarines?"
(union), but there is no way to express '"Which American ships are less
than 100 miles from which submarines?"

Another restriction is that only one maximization, minimization, or
count operator is allowed in each query, and it must be applied after
all other operations. For example, we cannot express as a single query
"How many ships are in each ship class?" since this requires forming a
set of counts, rather than simply counting a set. Also, we cannot
express '"Which ship class has the most ships in 1t?" since this
requires a count operator and a maximization operator in the same query.
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Finally, only Boolean restrictions are allowed in specifying a set
of objects. That is, all restrictions must be simple comparisons
between fields or predefined functions of fields (such as distance
functions computed on position fields), or combinations of simple
comparisons using AND and OR. Thus IDA gives us no way to express a
restriction involving a quantifier as in "Which American ships are more
than 500 miles from every American port?"

B. EXPRESSING COMPLEX QUERIES IN SODA

The features of the SODA query language enable it to overcome all
of the limitations of IDA discussed in the previous subsection. It
allows queries that refer to more than one set og objects, it permits
queries to specify the logical scoping of operationa, and it allows
quantifiers to be used in specifying restrictions on sets of objects.
This subsection informally discusses a number of examples which
illustrate these points. The details of the syntax of the SODA query
language may be found in Appendix A.

In the examples, we will assume that we have the following subset
of a simplified Navy command and control data base:

SHIP: (NAM, CLASS, TYPE, NAT, LGHN, POS)
SHIPCLASS: (CLASS, TYPE, LGHN, DRAFT, BEAM)
PORT: (PNAM, PNAT, PPOS)

In the SHIP relation, NAM is the name of the ship, CLASS is her
class, TYPE is her type (e.g. ‘SS’ for submarine), NAT is her
nationality, LGHN is her length, and POS is her current position. The
SHIPCLASS relation gives information that is common to all ships of the
same class. CLASS, TYPE, and LGHN are as in the SHIP relation, and
DRAFT and BEAM are the corresponding dimensions of the ships in the
class. In the port relation, PNAM is the name of the port, PNAT is the
country in which the port is located, and PPOS is the geographical
position of the port. We will also assume that the DBMS has the ability
to compute the function GCDIST, which gives the great circle distance
between two geographical locations.
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SODA avoids the first limitation of IDA, the inability to refer to
more than one set of objects per query, by using an IN expression to
associate a variable with each of the sets we want to mention in tha
query. The query '"Which American ships are less than 100 miles from
which submarines?" (which could not be expressed in IDA) can be

expressed in SODA as:

((IN S1 SHIP ((S1 NAT) EQ °‘US’))

(IN S2 SHIP ((S2 TYPE) EQ °SS’))

( (GCDIST ((S1 POS) (S2 POS))) LT 100)
(? (S1 NAM))

(? (S2 NAM)))

In this SODA query the expression (IN S1 SHIP ((S1 NAT) EQ °‘US’))
sets the variable S1 to range over tuples in the SHIP relation for which
the NAT field has the value °‘US°, i.e tuples for American ships.
Similarly, the expression (IN S2 SHIP ((S2 TYPE) EQ ‘SS°)) causes S2 to
range over tuples for submarines. Then for each pair of ships in the
Cartesian product of these two sets, the additional restriction
((GCDIST ((S1 PTP) (S2 PTP))) LT 100) is applied. That is, we check
whether the great circle distance between the two ships is less than 100
miles. For each pair of ships that satisfies all these restrictions, we
return the names of the ships. This is indicated by the selectors

(? (S1 NAM)) and (? (S2 NAM)).

We can illustrate SODA’s ability to express the relative scoping of
operations with the query, "How many ships are in each ship class?"
This could be expressed in SODA as:

((IN C SHIPCLASS)
(COUNT CNT1
(IN S SHIP ((S CLASS) EQ (C CLASS))))
(? (C CLASS))
(? CNT1))
The form of a counting operation is a list where first element is
the symbol COUNT, the second element is a count variable, and the rest
of the list is a subquery which defines the set of tuples to be counted.

The effect of a count operation is to set the value of the count
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variable to the number of tuples in the indicated set. In this example,
since the set to be counted is defined in terms of the field (C CLASS),
and since this occurrence of C is bound outside of the COUNT expression
and ranges over all tuples in the SHIPCLASS relation, the query is
interpreted to mean that the count operation is to be performed once for
every tuple in the SHIPCLASS relation. Thus, the interpretation of the
entire query: for each tuple in the SHIPCLASS relation, count the number
of tuples in the SHIP relation which have the corresponding value for
the CLASS field and return the name of the class and the count.

o NS AR e A SR AR e ® s 9

An example of of a COUNT and a MAX in the same query is provided by
the SODA representation of the query, "What ship classes have the most
ships in them?":

( (MAX CNTI
(IN C SHIPCLASS)
(COUNT CNT1
(IN S SHIP ((S CLASS) EQ (C CLASS)))))
(? (C CLASS))
(? CNT1))
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This query simply embeds the body of the preceding query inside a
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maximizing operation over the count variable. The basic form of a
maximizing operation is a list where the first element is the symbol
MAX, the second element is the term to be maximized, and the rest of the
list is a subquery that defines the set of tuples to be maximized over.
In this case the term to be maximized is CNT1 in the set consisting of
the tuples in the SHIPCLASS relation augmented by the corresponding
values of CNTl, the number of ships in each ship class. The effect of
the MAX operation is to set the occurrences of the variables bound by
the MAX (in this case C and CNT1l)) to range over the values for which
the maximized quantity has the greatest value. So in this example, the
MAX operation sets the variable C to range over the tuples in the
SHIPCLASS relation for the ship classes with the most ships in them and
sets CNTl to the corresponding number of ships. The rest of the query
simply returns the name of those ship classes and the number of ships
they contain.




Finally, SODA includes several types of quantifiers that can be

used to express complex restrictions on the sets of objects referenced

by queries. As an illustration of the use of a quantified restriction,
recall that there was no way in IDA to express the query "Which American L
ships are more than 500 miles from every American port?" In SODA this ;
could be expressed by:

((IN S SHIP ((S NAT) EQ ‘US’))

(ALL (IN P PORT ((P PNAT) EQ ‘US’))
((GCDIST ((S POS) (P PPOS))) GT 500))

(? (S NAM)))

gt >y
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The first line of this query restricts the system’s atteantion to
American ships via a simple restriction on the SHIP relation. The
second expression in the query further restricts this set but involves a
universal quantifier. The simplest form of a universally quantified
restriction is a list consisting of the symbol ALL, an IN expression,
and any number of restrictions. An ALL restriction is satisfied if all
the tuples in the set specified by the IN expression satisfy all the
restrictions in the list. If there is more than one binder expression
in the list, then the join of the sets they specify must satisfy all the
restrictions in the list.

In the current example, all the values of P that satisfy
(IN P PORT ((P PNAT) EQ “US’)) §
must also satisfy
((GCDIST ((S POS) (P PPOS))) GT 500) |

for the ALL restriction to be satisfied. Informally, this means that
all American ports must be more than 500 miles from the ship in 5
question, for that ship to meet this restriction. Finally, the NAM
field from every tuple that meets these restrictions is returned to the i

user.

A SOME restriction has the same syntactic form as an ALL 5
restriction, the difference in interpretation being that the restriction
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is satisfied if some tuple in the set specified by the binder
expressions satisfies the other restrictions within the SOME expression.
Thus, to change the previous query to "Which American ships are more
than 500 miles from some American port?" we only have to replace the
ALL by a SOME:

((IN S SHIP ((S NAT) EQ ‘US°’))

(SOME (IN P PORT ((P PNAT) EQ ‘US’))
((GCDIST ((s POS) (P PPOS))) GT 500))
(? (S NAM)))

Notice that in these examples, there are some restrictions placed
inside the IN expression itself and some restrictions placed after the
IN expression. In a SOME restriction this distinction is of little
consequence, since placing a restriction one place or the other does not
change the interpretation of the query. If we place a restriction
inside an IN expression, we are using it to define the set that is being
quantified over. This is equivalent, however, to quantifying over a
less restricted set, but being more restrictive as to the additional
conditions that one of the members of the set has to satisfy, which is
the interpretation of placing a restriction outside the IN expression.
Thus, we could have expressed the previous query by either of the
following expressions:

((IN S SHIP ((S NAT) EQ ‘US’))
(SOME (IN P PORT)

((P PNAT) EQ ‘US’)

((GCDIST ((S POS) (P PPOS))) GT 500))
(? (S NAM)))

or

((IN S SHIP ((S NAT) EQ ‘US’))
(SCME (IN P PORT ((P PNAT) EQ ‘US”)
((GCDIST ((S POS) (P PPOS))) GT 500)))
(7 (S NAM)))
In an ALL restriction, however, this distinction is crucial. If we
move a restriction from inside an IN expression to outside, the
interpretation is changed completely, since instead of the restriction

partially defining what set is being quantified over, it partially

29




defines the condition that all the members of the set must meet. In
this respect the syntax of the SODA query language is designed to mirror
the syntax of iknglish, so that the process of translating from English
to SODA will be simplified. The idea is that the restrictions derived
from noun phrase wodifiers like "American" in "all American ships" would
be placed inside an IN expression, but restrictions that come from
~ predicate modifiers would be placed outside the IN expression. If this
rule is followed, then the resulting SODA queries will exactly capture
the difference between "Are all American ships submarines?" and "Are
all ships American submarines?" Conversely, the SODA queries for "Are
some American ships submarines?™ and "Are some ships American
submarines?”" will be logically equivalent, as are the English

questions.

As a final point on this topic, it should be noted that, although
the tvo questions with “some" must have the same answer, they do differ
slightly in what they suggest about the assumptions of the person asking
the question. "Are some American ships submarines?" suggests that he
believes that there are American ships, whereas "Are some ships American
submarines?" suggests only that he believes that there are ships. As
Kaplan [16]) has pointed out, it can be very important to inform the user
of a data base system when the assumptions behind his queries are wrong,
so that he can properly interpret the answers he gets from the system.
The distinction in SODA between restrictions inside an IN expression and
those outside could be used to differentiate the restrictions whose
satisfiability the user is assuming, from those whose satisfiablity he

is questioning.

C. EXPANDING VIRTUAL RELATIONS AND ORDERING ACESSES TO RELATIONS

In the previous subsection, we assumed that SODA always used the
relations specified by IN-expressions to retrieve the requested fields.
For instance, if the variable § is introduced in the expression
(IN S SHIP), then any subsequent reference such as (S NAM) would be
interpreted as indicating the NAM field in the SHIP relation.
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In fact SODA is more flexible than this. The relations specified
in the initial SODA query are interpreted as virtual relations that may
refer to fields stored on several actual data base relations. In SODA,
there is one virtual relation for each type of object that we want to
talk about (i.e. allow as the value of a variable), and for each type
of object there is a schema that indicates the semantically meaningful
ways of  linking fields in different relations. (In the current
implementation, the same schema is used for all virtual relations. This
is an artifact of the particular data base being used, and would not be
possible in general.) For instance, the schema for the virtual SHIP
relation would specify that when talking about a ship, if we mention a
field in the data base SHIP relation (e.g. NAM) and another field in
the SHIPCLASS relation (e.g. DRAFT), then the way to link them is to
jJoin the two relations via the CLASS field.

SODA uses this information to transform the references to virtual
relations in the initial query into references to actual data base
relations. It does this by scanning the query for all the fields
mentioned in connection with each variable introduced by amn IN
expression. It then uses the schema for the virtual relation that the
variable ranges over to find the smallest set of data base relations
that include all the fields and to specify the links between these
relations. SODA then replaces the original IN expression that mentions
the virtual relation with a series of IN expressions that mention the
selected data base relations and specify the joins between them. The
references to the fields in the virtual relation are replaced by the
corresponding references to fields in the data base relations. For
example, if we wanted to retrieve the name and draft of all the ships in
the data base, the initial query would be:

((IN S SHIP)
(? (S NAM))
(? (S DRAFT)))
Since the NAM field occurs only in the data base SHIP relation and
since the DRAFT field occurs only in the SHIPCLASS relation, both
relations must be accessed. SODA therefore transforms this query into:

3l




((IN S SHIP)

(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
(? (S NAM))

(? (C DRAFT)))

In this expanded query, SHIP and SHIPCLASS are interpreted as being
actual data base relations, whereas in the initial query SHIP was
interpreted as a virtual relation.

In expanding references to virtual relations, SODA must choose
which relation to use to retrieve a particular field if that field is
available from more than one relation. In our sample data base the type
and length of a ship can be retrieved either from the SHIP relation or
the SHIPCLASS relation. To solve thia problem, SODA uses heuristic
techniques developed for IDA to attempt to minimize the number of

relations accessed. For more information on how this is done, see [6].

Another problem for SODA is to choose the order in which to access
the relations mentioned in a query. We could interpret a SODA query as
specifying a particular procedure by making a fixed processing strategy
(such as strictly sequential processing) part of the definition of the
language. The user would then be responsible for determining the order
in which relations are accessed by choosing the order in which they are
mentioned. Since SODA’s main purpose is to be the target language for a
natural-language processor that makes no attempt to order the queries it
generates for efficiency, we use a few simple heuristics to reorder the
initial query. First, restrictions are applied as soon as all the
relations that they mention have been accessed, since this cuts down the
amount of data that must be processed in the rest of the query. Next,
any maximization, minimization, or counting expressions that can be
processed are taken, since these expand the amount of data only
slightly. After these expressions, IN expressions which can immediately
be restricted are preferred over IN expressions which cannot. These
heuristics are all intended to help choose the most restricted parts of
the query first in hopes of minimizing the size of intermediate results.
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D. PROBLEMS IN DISTRIBUTED PROCESSING OF COMPLEX QUERIES

If all the relations mentioned in an expanded reordered SODA query
are stored at one data base site, then all that remains to be done is to
translate the query into the query language of the DBMS at (hat site and
execute the query. If, however, the data is distributed over two or
more sites, some strategy must be devised for combining information from

several locations.

What type of strategy is used will depend on assumptions about the
relative efficiency of various operations. Since our data base 1is
distributed over several sites on the ARPANET, a relatively low-speed
communications channel, we have assumed that query processing will be
most efficient if as much work as possible is done at a single site, and
the amount of data transmitted between sites is kept to a minimum. (If
transferring data between sites were fast compared to query processing
at one site, the best strategy might be to spread the data over as many

sites as possible to take advantage of concurrent processing.)

Given these assumptions, there seem to be two simple approaches
that might be followed. One approach is to move all the relevant data
to a single data base site and execute the query in one access to that
site. We will call this the centralized approach. An efficient
implementation of this approach would involve doing any local processing
that would reduce the amount of data transmitted, such as taking
projections, restrictions, or joins of relations, before sending the

data to the primary site.

The other approach, which we will call the incremental approach, is
to decompose the query into a series of simpler queries, each of which
can be executed at a single data base site. Then each query is executed
in turn at the corresponding site, and the results are transferred to
the site where the next query is to be processed and combined with the
information there. An efficient implementation of this approach would
attempt to order the execution of the queries so as to minimize the

total amount of data transmitted.




These two approaches do not exhaust the range of possibilities, of
course. In fact, from a slightly more general point of view, they can
be seen to be the two extremes of a spectrum. Since the final answer to
a query will be generated at only one of the data base sites, we can
view the problem of distributed query processing as how to organize the
data base sites as a "data-flow tree," with information being
transmitted up the branches towards the root, where the final answer is
generated. From this point of view, the centralized approach limits its
attention to the maximally branching, minimally deep trees, and the
incremental approach limits its attention to the minimally branching,
maximally deep trees. The most efficient organization may well be found
in one of the intermediate possibilities, but we only consider these two

approaches, as they are the easiest to implement.

If used intelligently, the incremental approach is often much more
efficient than the centralized approach. The reason for this is not
hard to see. Using the incremental approach, if we begin processing
with a partial query that is highly restricted, that restriction will be
"inherited" by all the subsequent partial queries that are processed,
since at every stage we combine everything we have done so far before
transferring the data to the next site. In the centralized approach,
however, any processing that is done before transferring data is done
independently of processing at other sites, so there is no way to take

advantage of restrictions that may have been computed elsewhere.

For instance, in our sample data base, suppose that the PORT
relation and the SHIPCLASS relation are stored at site 1 and the SHIP
relation is stored at site 2. If we wanted to know the name and draft
of all the ships currently in American ports, we would have to access
all three relations and, therefore, both data base sites. The expanded
SODA query for this request would be:

((IN P PORT ((P PNAT) EQ ‘US’))

(IN S SHIP ((S POS) EQ (P PPOS)))

(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
(? (S NAM))

(? (C DRAFT)))
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The most natural way of processing this query using the incremental
approach would be to retrieve the locations of American ports from
site 1, transfer this information to site 2 to find the names and
classes of the ships at these locations, and then transfer that
information back to site 1 to find the drafts of the ships and return
the answers. Presumably, the amount of data transferred during this
process .would be significantly smaller than the amount that would be
transferred either by moving the required fields of the SHIP relatiomn to
site 1 or by moving the required fields of the SHIPCLASS and PORT
relations to site 2, as would be required by the centralized approach.

Examples such as this suggest that the incremental approach is to
be generally preferred to the centralized approach. However, in
complex, quantified queries, which are the major concern of our work on
SODA, the incremental approach may be impossible to apply. This fact
seens not to have been generally recognized in the literature on
distributed query processing (e.g., [17)), where joining is typically
the only method considered for combining data from two or more

relations.

The problem of distributed query processing is considerably
simplified by considering only joins for two reasons: First, joins
specified over more than two relations can always be decomposed into a
series of binary joins. Thus, if some of the relations to be¢ joined are
at one site and some are at another site, the relations at the same site
can be processed first, and the intermediate results can be combined
later. In the previous example, the query specified a join over the
PORT, SHIP, and SHIPCLASS relations. In processing, this was decomposed
into a join over the PORT and SHIP relations, and a join between the
result of this operation and the SHIPCLASS relation.

The second simplification that joining permits is that, since the
join operation is associative, it doesn’t matter logically how the
decomposition is done. Therefore, the decomposition can be chosen to
suit the way the data is distributed. In our example we first joined
the PORT relation to the SHIP relation and then joined the result of
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that operation to the SHIPCLASS relation. If the distribution of the
data or the expected sizes of intermediate results had been different,
however, it might have been more efficient to join the SHIP and
SHIPCLASS relations first, and then add in the PORT relation.

In complex, quantified queries, on the other hand, the possible
ways of decomposing queries are much more restricted. It is often
inpon.iﬁlc to break up queries to match the distribution of the
relations, and in some cases, queries over several relations cannot be
decomposed at all.

This point can be illustrated by changing our previous example
slightly. Consider the same query, finding the name and draft of all
ships in American ports, but with the PORT and SHIP relations at site 1
and the SHIPCLASS relation at site 2. In this case, it is probably most
efficient to find the ships that are in American ports by joining the
PORT relation and SHIP relation at site 1 and transfer the result to
site 2 to join it with the SHIPCLASS relation to form the final anawer.

Now let us alter the query so that it includes a universal
quantifier, but still refers to the same relations in the same order,
e.g., "Which American ports contain only ships thch have draft greater
than 50 feet?":

((IN P PORT ((P PNAT) EQ ‘US°’))

(ALL (IN S SHIP ((S POS) EQ (P PPOS)))
(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
((C DRAFT) GT 30))

(? (P PDEP)))

The logical structure of this SODA query can be indicated by
paraphrasing it back into English as follows:

For each tuple P in the PORT relation
with (P PNAT) equal to ‘US’
such that, for all tuples S in the SHIP relation
with (S POS) equal to (P PPOS)
and all tuples C in the SHIPCLASS relation
with (C CLASS) equal to (S CLASS),
(C DRAFT) is greater than 50,
return (P PDEP).
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Since the PORT and SHIP relations are both stored at site 1, and
since there is a link specified between them, ((S POS) EQ (P PPOS)), we
would like to decompose the query by first operating on these two
relations and transferring the intermediate result to site 2 for
processing with the SHIPCLASS relation. Unfortunately, the universal
quantifier ALL does not permit any such decomposition. There is no way
to combine the data referred to outside of the ALL expression with only
part of the data referred to inside. We would need a distribution
principle analogous tQ.A*(l+C) = (A*B)+(A*C) to distribute the universal
quantifier over the relations mentioned inside of the ALL expression,
but no such principle exists.

Any query decomposition that is performed must respect the scope of
quantifiers. We can independently process a portion of a query that
lies entirely within the scope of a quantifier or entirely outside the
scope of a quantifier, but we cannot independently process a portion of
a query that splits the scope of a quantifier.

By nesting quantifiers more deeply, it is possible to comnstruct
queries over several relations that cannot be decomposed at all.
Suppose we wanted to know the ship classes for which every American port
contains some ship in that ship class. This could be represented in
SODA as:

((IN C SHIPCLASS)
(ALL (IN P PORT ((P PNAT) EQ ‘US’))
(SOME (IN S SHIP ((S POS) EQ (P PPOS))
((S CLASS) EQ (C CLASS)))))
(? (C CLASS)))

The English paraphrase of this SODA query would be:

For each tuple C in the SHIPCLASS relation
such that, for all tuples P in the PORT relation
with (P PNAT) equal to ‘US’,
there is some tuple S in the SHIP relation
with (S POS) equal to (P PPOS)
and (S CLASS) equal to (C CLASS),
return (C CLASS).
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This query cannot be decomposed. We cannot combine the data from
the SHIPCLASS relation with the data from either the SHIP relation alone
or the PORT relation alone, because this would cut across the scope of a
quantifier. For the same reason, the SHIP relation and PORT relation
cannot be combined without processing the whole SOME restriction. But
this cannot be done independently of the SHIPCLASS relation, because the
SOME restriction refers to the data from the SHIPCLASS relation via the
term (C CLASS). Answering this query, therefore, requires simultaneous
access to three relations.

Even though in queries such as these we cannot always combine
relations locally before transferring data, we still can use projections
and restrictions to cut down the amount of data that must be
transferred. It turns out that in some cases we can add logically
redundant restrictions that have this effect, although this is not done
in the current implementation. Recall the previous query, "Which
American ports contain only ships which have draft greater than 50
feet?" We could add a redundant restriction without changing the answer
to the query and get "Which American ports contain only ships which are
in some American port and have draft greater than 50 feet?" The SODA
representation of the modified query would be:

((IN P PORT ((P PNAT) EQ ‘US’))
(ALL (IN S SHIP ((S POS) EQ (P PPOS))
(SOME (IN P1 PORT)
((P1 PNAT) EQ °US‘)
((P1 PPOS) EQ (S P0S))))
(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
((C DRAFT) GT 50))
(? (P PDEP)))

We still cannot independently combine the data generated by the
expression (IN P PORT...) with the data generated by (IN § SHIP...),
but if the PORT and SHIP relations are at the same site, we can compute
the restrictions on (IN S SHIP...), including the restriction to ships
in American ports using (IN Pl PORT...). So, although this restriction
is logically unnecessary, it permits us to transfer much less data than

would be required without it.
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E. DISTRIBUTED QUERY PROCESSING IN SODA

As the previous subsection indicated, complex queries do not always
permit decomposition into sequences of simpler queries that match the
distribution pattern of the data base. As a result, we have chosen to
base the initial implementation of SODA on the centralized approach to
distributed query processing. In doing so, we have traded the
efficieﬁcy of the incremental approach in handling simpler queries for
the generality of an approach that handles the more complicated queries
which are our primary interest. A more sophisticated implementation
could employ a mixed strategy, using the incremental approach when it is
applicable and falling back on the centralized approach when it is not.
Also, we have not implemented the type of query transformation discussed
in the preceding subsection, since further research is needed to

determine what the scope and limits of such techniques are.

In processing a query, SODA must first decide which data base site
to use as the primary site for executing the query. A set of reasonable
candidates 1is selected by starting with a list of all the sites that
contain at least one of the relations mentioned in the query. Then
redundant sites are eliminated until no site remaining in the 1list has
the property that some other site in the list contains all the relations
mentioned in the query that are contained by that site. Processing of
the query is then simulated, trying each of the remaining sites as the
primary site. The choice of primary site that appears to result in the
least amount of data being transferred is selected to be the primary
site for actually processing the query. This measure is currently
crudely estimated by choosing the site that results in the fewest
unrestricted queries requesting data from a secondary site. If this
leaves more than one possibility, then one of those that results in the
fewest restricted queries is chosen. A query is considered to be
restricted if there is a restriction on any of the relations mentioned
in the query.

Once the primary data base site has been chosen, SODA reformulates

the query for execution at that site. The query is examined, one
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expression at a time. Expressions which refer only to data that 1is

already at the primary site are left unchanged. If an expression refers
to data that is not stored at the primary site, then this data is
transferred to a temporary relation at the primary site, and the query
is reformulated to refer to this relation. To take an example from
Section IV.D, recall that the SODA query for retrieving the name and
draft of all ships in American ports is:

((IN P PORT ((P PNAT) EQ °‘US‘))

(IN S SHIP ((S POS) EQ (P PPOS)))

(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
(? (S NAM))

(? (C DRAFT)))

If the PORT relation is stored at site 1 and the SHIP and SHIPCLASS
relations are stored at site 2, site 2 will be chosen as the primary
site for execution of the query, as this results in only a single
restricted query being executed at a secondary site. Since the PORT
relation is not stored at site 2, SODA first obtains the information

needed from the PORT relation by dispatching the query:

((IN P PORT ((P PNAT) EQ ‘US’))
(? (P PPOS)))

to site 1 and stores the result in a temporary relation at site 2, say
in field FIELD]l of relation TEMPl. The transferred data is constrained
as much as possible by applying the restriction ((P PNAT) EQ °‘US’))
before the transfer, and only the fields required by the rest of the
query are moved, in this case, just the PPOS field. The main query is

now reformulated as:

((IN T TEMP1)

(IN S SHIP ((S POS) EQ (T FIELD1)))

(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
(? (S NAM))

(? (C DRAFT)))

Since the query now refers only to relations stored at site 2, it can be

executed in a single access to that site.




The process just described is complicated somewhat by a set of
issues involving redundantly stored data and error recovery. One of the
principal advantages of a distributed data base is that the system can
be made more reliable by storing data redundantly at several data base
sites. If this is done, then the system can tolerate failure of one or
more data base sites and still be able to answer all the queries covered
by the data base (although not always with the most recent information).

In SODA, therefore, we take into account the possibility that a
given relation may be stored at more than one data base site, and we use
this fact to try to recover from data base failures. Because of our
centralized approach to query processing, we distinguish between failure
of the primary site and failure of one of the secondary sites. Since
all intermediate results are stored at the primary site, a failure there
requires complete replanning and re-execution of the query. If a
secondary site fails, however, SODA backs up only as far as the
beginning of the portion of the query involved in the current access to
that site and begins replanning from that point. This preserves any
intermediate results that have actually been extracted from secondary

sites and thus avoids unnecessary recomputation.

A more difficult question for SODA is at what site to access a
particular relation, when more than one possibility is available.
Solutions to this problem are also constrained by our use of a
centralized approach for query processing, since, in general, we want to
access relations at the primary site if possible. There are exceptions
to this rule, however. In particular, if we must transfer information
from a secondary site, it may be more efficient to go ahead and combine
that information with data from another relation at the secondary site,
even though the other relation may also be stored at the primary site.

SODA uses a number of simple heuristics to decide whether to access
a relation at the primary site or a secondary site. Roughly, SODA will
prefer a secondary site if the relation is joined to another relation
which must be accessed at the secondary site, and if performing the join
appears likely to cut down the amount of data retrieved from that
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relation. A join is assumed to cut down the amount of data retrieved if

it puts more restrictions on the data.

For instance, if we wanted to know about American ships with a
draft of more than 50 feet, we would have to access the NAT field in the
SHIP relation and the DRAFT field in the SHIPCLASS relation. Suppose
! the SHIP relation is stored only at a secondary site and the SHIPCLASS
relation is stored both at that site and the primary site. In this

case, we would access the SHIPCLASS relation at the secondary site

because it would further restrict the set of ships for which data must
be transferred to the primary site. If, on the other hand, we simply
wanted to retrieve the drafts of American ships, we would access the
SHIPCLASS relation at the primary site, since this would not further
restrict the data being transferred.

These heuristics are rather crude, since they do not take into

account the relative sizes of relations, how constraining a particular
restriction is, or the functionality of joins betwcen relations (e.g.,
many-to-one, one-to-many). There is clearly a trade-off, however,
between time spent in access planning and time spent in query execution,
and it is not clear how much more effort could be put 1into access

planning that would justify itself in more efficient query execution.

Compared to the SDD1 distributed DBMS [17] (18] [19]), the
techniques used in SODA have both advantages and disadvantages. SDD1
takes what is essentially a centralized approach to query processing,
but not as completely as SODA. The main difference is that for purposes
of assembling all the relevant data at a single site, SDD1 treats the
query as if it contained only joins and restrictions. If a query
specifies a more complex way of combining relations than joining, SDDI1
will find a join that "covers" that portion of the query, in the sense
that the data it retreives includes as a subset all data required to
answer the query. However, it does not perform a precise logical
analysis, as SODA does, to retrieve exactly the required data. Because

SDD1 takes this simpler view, it is able tc use more sophisticated
heuristics for combining partlal results from several secondary sites
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before transferring them to the primary site. However, since the
partial results are only approximate, the entire query must be re-
executed at the primary site.

One clear advantage that SDD1 has over SODA is that SDD1 maintains
statistical information about the size of relations and the distribution
of values of fields. This enables SDD1 to predict more accurately than
SODA the size of intermediate results, and hence do a better job of
query optimization. It should be noted, however, that SODA is designed
to permit use of such information without any changes to the basic

structure of the system.

One final difference between SDD1 and SODA is that, although SDDl1
permits arbitrarily redundant data bases, a particular query is answered
only with respect to a single nonredundant mapping of the data base.
Because SODA can decide at processing time where to access a redundantly
stored relation, it is possible to answer some queries more efficiently
and to recover from the failure of a secondary data base site without

completely reprocessing a query.

F. LIMITATIONS AND POSSIBLE EXTENSIONS OF SODA

Like any real system which addresses a complex problem, SODA offers
only partial solutions to the issues it raises. There are several areas
vhere significant improvements or extensions could be made. One of
these areas is the expressive power of the query language. Although
SODA is a richer language than IDA and many other data base query
languages, there are still useful queries that it cannot express.

One of the constructs that SODA lacks is some kind of conditional
expression. For example, it might be desirable not to store the current
position of ships that belong to task forces individually in the SHIP
relation, but rather to have this information derived by looking up the
location of the task force to which a ship belongs in a TASKFORCE
relation. This would make it possible to update the location of the
entire task force at once, rather than ship by ship. If we do this,
however, retrieving the position of a ship becomes a conditional

43




procedure, depending on whether the ship belongs to a task force. To
retrieve the position of a particular ship, such as the Fox, we would
have to be able to express in SODA the following query, which we
currently cannot handle:

For the tuple S in the SHIP relation
with (S NAM) equal to °FOX’,
if (S TFNAM) has the undefined value
then return (S POS),
otherwise, for the tuple T in the TASKFORCE relation
with (T TFNAM) equal to (S TFNAM),
return (T TFPOS).

Another class of queries that cannot be expressed in SODA is
queries that involve following chains of indefinite length through the
data base. For instance, in the personnel data bases that are commonly
used to illustrate concepts of data base access, a classic problem is to
answer the query, "Which employees earn more than their managers?" Many
of the siwmpler query languages that have been proposed, including IDA,
cannot represent such a question, although for SODA this would be no

problem.

However, if we want to define the relationship "superior of" to be
the transitive closure of "manager of" (i.e., the manager of the
manager, etc.), we are in trouble. There does not seem to be any non-
procedural query language, including SODA, that could express queries
such as, "Which employees earn more than all/some of their superiors?"
The problem is that expressing this type of query asks a question about
all chains through the data base of a certain kind, whereas existing
query languages only allow asking about all tuples of a certain kind.

Another general area where SODA could be improved is query
optimization and access planning. The heuristics used to pick the order
in which relations are accessed are quite crude, taking into account
only which references to relations are restricted. As we pointed out in
discussing the heuristics for distributed query processing, it would
also be useful to consider the relative sizes of relations, how
constraining a restriction is, and the functionality of joins between
relations.
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It will never be poasible to guarantee that a query will be
processed in the optimum way, however. First of all, to do so would
require knowing the size of all of the possible intermediate results
that might be generated in processing the query, and in general the only
way to get this information is to execute the query. Second, even if we
had good enough estimates for all of the relevant factors, choosing the
most efficient way to process a query would still be a combinatorial
search, which might take longer to perform than executing the query with
the few simple heuristics we currently have. So any technique for query
optimization must be empirically tested to see whether the savings it
produces are worth the cost of applying it.

Finally, some of the improvements planned for SODA concern
pragmatic problems in dealing with interactive users. One of these
problems is that if there is no information in the data base satisfying
a complex query, the system simply returns a null result with no further
explanation. Often it would be much more helpful to the user if the
system would provide some indication of why it failed to find an answer.
For instance, if we ask the system to compute the distance between the
Fox and the Kennedy and get no answer, it might indicate that the Fox is
not listed in the data base, or the position of the Fox is not given in
the data base, or the Kennedy is not listed in the data base, or the
position of the Kennedy is not given in the data base, or any
combination of the above. We are currently investigating how this
information might be obtained from the data base and supplied to the
user in a form he can understand. For more discussion of problems of
this kind, see Kaplan [16].

The other ﬁrag-ntic problem we are looking at is how to save and
make use of previously retrieved information to avoid recomputing it.
For example, if we ask the LADDER system in English, "Which American
ships are in the Atlantic?" followed by the question "What are their
fuel states?" the pronoun "their" will be correctly resolved to the
phrase "American ships in the Atlantic" by the natural-language front
end, but this set of ships will be recomputed by the data base access
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component. Although the natural-language processor realizes that the
two queries are related, SODA does not. We are examining various issues
that arise in dealing with this problem, including what information to
save, how long to save it, and where it should be stored.
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V  ACCESSING A CODASYL DATA BASE SYSTEM: DBMS-20

A.  INTRODUCTION

One of the significant improvements made to the LADDER system
during the period covered by this report was to extend its capabilities
to include querying more than one DBMS. The system can now access DBMS-
20, a DBGT data base system (9] provided by Digital Equipment
Corporation (DEC) for the DecSystem-20 operating system, which supports
a subset of the CODASYL data model ([l14]. This section of the report
discusses the problems encountered in developing a translator to produce
queries for DBMS-20 and in interfacing the DBMS-~20 system to LADDER.

The data access conponént of LADDER, called SODA, comnsists of two
principal parts. These are (1) a planning module, which decides how an
input query is to be evaluated given the distribution of required data
among various relations stored on multiple data base management systems
(DBMSs) at multiple sites on the ARPANET, and (2) a set of translation
modules, each of which translates SODA queries into the query language
supported by a particular DBMS. Initially, the only SODA translator
produced queries in Datalanguage, the query language supported by the
Datacomputer DBMS, which, like SODA, is fundamentally a relational

system.*

DBMS-20, on the other hand, is a "network" DBMS. Simply stated, a
network data base allows the value of a field to be an explicit pointer
to another record. (This is done by use of the SET feature in DBMSs
based on the CODASYL specification.) For example, to link a SHIP record

* In using the Datacomputer, SODA assumes that it is a relational DBMS.
In general, however, the Datacomputer can be viewed as a hierarchical
DBMS: it allows the use of "repeating groups" (i.e., groups of fields
which may be repeated an indefinite number of times inside a record), a
feature is explicitely forbidden in the relational model of data. 1In
the Blue File, this feature of the Datacomputer is not in use, so the
Blue File is for all practical purposes a relational data base.
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to the corresponding SHIPCLASS record in the Blue File on the
Datacomputer, one must read the CLASS field in the SHIP record, and find
the record in the SHIPCLASS file whose CLASS field has the same value.
On the other hand, in a CODASYL version of the Blue File, a SET could be
implemented in such a way that a pointer would directly link each SHIP
record to the corresponding SHIPCLASS record. Obviously, the query
program which is generated for the CODASYL version of a Blue File would
be very different from one generatéd for the relational Blue File. The
ability of SODA to access a DBTG network data base opens up new
possibilities for speeding up processing of some queries, through use of
the SET feature.

B. COHPILI“E_SDDA QUERIES

DBMS~20 accepts query programs written in Interactive Query
Language (IQL), a COBOL-based language, which it compiles and executes.
Our development effort coﬁsisted of making incremental changes to the
IQL language to support needed features not originally supplied,
modifying the compiler to support the language changes, providing an
interface with the rest of the LADDER systéQ: and implementing a
translator to compile SODA expressions into IQL programs. In the latter
effort, we closely mimicked the structure of the translator which
generates Datalanguage for the Datacomputer DBMS.

A SODA query is a list that may contain a number of different
constructs. For each comnstruct thexe is a prototypical code structure
in IQL generated, and one or two modules of code which produce that

structure. The following subsections review these modules.

1. Relation-Searching Constructs

A fundamental operation in answering queries is stepping
through some or all of the tuples of a relation to perform some other
operation on them: In the SODA expressions seen by the SODA
translators, there are six constructs which involve this operation: IN,
MAX1, MINl, COUNT, SOME and NONE (MAX, MIN, and ALL expressions are
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reformulated in terms of the others). The last two of these return a
value of True or False, and will be discussed in a later section on

restrictions.

IN is the most straightforward of the constructs. An IN
expression specifies a relation whose tuples are to be examined and a
tuple variable to associate with this relation. Restrictions may also
be specified in the IN expression to indicate that processing is only to
be performed on certain tuples in the relation. All SODA constructs
following the IN construct are considered to be within the scope of the
loop it implicitly defines. A COUNT expression defines a variable whose
value is to be the number of tuples that satisfy the subquery in the
COUNT expression. This variable can be referenced later by other parts
of the program, or returned as an answer to LADDER. A MAXl expression
contains a specification of a quantity to be maximized and a subquery
defining the tuples over which the maximization is to be performed. The
effect of the MAX]1 expression is to find a set of values for the
variables in the scope of the expression that produces the highest value
for the quantity being maximized. As<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>